Relating Visual and Semantic Image Descriptors
نویسندگان
چکیده
This paper addresses the automatic analysis of visual content and extraction of metadata beyond pure visual descriptors. Two approaches are described: Automatic Image Annotation (AIA) and Confidence Clustering (CC). AIA attempts to automatically classify images based on two binary classifiers and is designed for the consumer electronics domain. Contrastingly, the CC approach does not attempt to assign a unique label to images but rather to organise the database based on concepts.
منابع مشابه
SEIMCHA: a new semantic image CAPTCHA using geometric transformations
As protection of web applications are getting more and more important every day, CAPTCHAs are facing booming attention both by users and designers. Nowadays, it is well accepted that using visual concepts enhance security and usability of CAPTCHAs. There exist few major different ideas for designing image CAPTCHAs. Some methods apply a set of modifications such as rotations to the original imag...
متن کاملAutomatic Image Annotation for Semantic Image Retrieval
This paper addresses the challenge of automatic annotation of images for semantic image retrieval. In this research, we aim to identify visual features that are suitable for semantic annotation tasks. We propose an image classification system that combines MPEG-7 visual descriptors and support vector machines. The system is applied to annotate cityscape and landscape images. For this task, our ...
متن کاملRecognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملAutomated Map Reading: Image Based Localisation in 2-D Maps Using Binary Semantic Descriptors
We describe a novel approach to image based localisation in urban environments using semantic matching between images and a 2-D map. It contrasts with the vast majority of existing approaches which use image to image database matching. We use highly compact binary descriptors to represent semantic features at locations, significantly increasing scalability compared with existing methods and hav...
متن کاملToward an Effective Combination of Multiple Visual Features for Semantic Image Annotation
In this paper we study the problem of combining low-level visual features for semantic image annotation. The problem is tackled with a two different approaches that combines texture, color and shape features via a Bayesian network classifier. In first approach, vector concatenation has been applied to combine the three low-level visual features. All three descriptors are normalized and merged i...
متن کامل